Improving Genetic Algorithms' Efficiency Using Intelligent Fitness Functions

نویسندگان

  • Jason Cooper
  • Chris J. Hinde
چکیده

Genetic Algorithms are an effective way to solve optimisation problems. If the fitness test takes a long time to perform then the Genetic Algorithm may take a long time to execute. Using conventional fitness functions Approximately a third of the time may be spent testing individuals that have already been tested. Intelligent Fitness Functions can be applied to improve the efficiency of the Genetic Algorithm by reducing repeated tests. Three types of Intelligent Fitness Functions are introduced and compared against a standard fitness function The Intelligent Fitness Functions are shown to be more efficient.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving performance of genetic algorithms by using novel fitness functions

This thesis introduces Intelligent Fitness Functions and Partial Fitness Functions both of which can improve the performance of a genetic algorithm which is limited to a fixed run time. An Intelligent Fitness Function is defined as a fitness function with a memory. The memory is used to store information about individuals so that duplicate individuals do not need to have their fitness tested. D...

متن کامل

Intelligent scalable image watermarking robust against progressive DWT-based compression using genetic algorithms

Image watermarking refers to the process of embedding an authentication message, called watermark, into the host image to uniquely identify the ownership. In this paper a novel, intelligent, scalable, robust wavelet-based watermarking approach is proposed. The proposed approach employs a genetic algorithm to find nearly optimal positions to insert watermark. The embedding positions coded as chr...

متن کامل

AERO-THERMODYNAMIC OPTIMIZATION OF TURBOPROP ENGINES USING MULTI-OBJECTIVE GENETIC ALGORITHMS

In this paper multi-objective genetic algorithms were employed for Pareto approach optimization of turboprop engines. The considered objective functions are used to maximize the specific thrust, propulsive efficiency, thermal efficiency, propeller efficiency and minimize the thrust specific fuel consumption. These objectives are usually conflicting with each other. The design variables consist ...

متن کامل

Evolution of Fuzzy Controllers for Robotic Vehicles: The Role of Fitness Function Selection

An important issue not addressed in the literature, is related to the selection of the fitness function parameters which are used in the evolution process of fuzzy logic controllers for mobile robot navigation. The majority of the fitness functions used for controllers evolution are empirically selected and (most of times) task specified. This results to controllers which heavily depend on fitn...

متن کامل

FIXED-WEIGHT EIGENVALUE OPTIMIZATION OF TRUSS STRUCTURES BY SWARM INTELLIGENT ALGORITHMS

Meta-heuristics have already received considerable attention in various engineering optimization fields. As one of the most rewarding tasks, eigenvalue optimization of truss structures is concerned in this study. In the proposed problem formulation the fundamental eigenvalue is to be maximized for a constant structural weight. The optimum is searched using Particle Swarm Optimization, PSO and i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003